login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes. 49
2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The number .23571113171923.... was proved normal in base 10 by Copeland and Erdős but is not known to be normal in other bases. - Jeffrey Shallit, Mar 14 2008

Could be read (with indices 1, 2, ...) as irregular table whose n-th row lists the A097944(n) digits of the n-th prime A000040(n). - M. F. Hasler, Oct 25 2019

REFERENCES

G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.

Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..2000

A. H. Copeland and P. Erdős, Note on Normal Numbers, Bull. Amer. Math. Soc. 52, 857-860, 1946.

Mikołaj Morzy, Tomasz Kajdanowicz, Przemysław Kazienko, On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy, Complexity, Volume 2017 (2017), Article ID 3250301, p. 5.

Simon Plouffe, Copeland-Erdos constant, the primes concatenated

Simon Plouffe, Copeland-Erdos constant, the primes concatenated

Eric Weisstein's World of Mathematics, Copeland-Erdős Constant

FORMULA

Equals sum(n=1..inf, prime(n)*10^-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006

Equals sum(i=1..inf, p_i * 10^-( sum(j=1..i, 1 + floor(log_10(p_j))) )) or sum(i=1..inf, p_i * 10^-( i + sum(j=1..i, floor(log_10(p_j))) )) or sum(i=1..inf, p_i * 10^-( sum(j=1..i, ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014

EXAMPLE

0.235711131719232931374143475359616771737983899710110310710911312...

MATHEMATICA

N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)

N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)

IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)

PROG

(PARI) default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009

(PARI) concat( apply( {row(n)=digits(prime(n))},  [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019

(Haskell)

a033308 n = a033308_list !! (n-1)

a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int]

-- Reinhard Zumkeller, Mar 03 2014

CROSSREFS

Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).

Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).

Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).

Cf. A165450, A019518, A074721, A073034, A191232, A129808.

Cf. A066747 and A191232: binary Copeland-Erdős constant: decimals and binary digits.

See also A338072.

Sequence in context: A113493 A060420 A077648 * A134690 A295868 A228355

Adjacent sequences:  A033305 A033306 A033307 * A033309 A033310 A033311

KEYWORD

nonn,cons,base,changed

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 19:08 EDT 2020. Contains 337906 sequences. (Running on oeis4.)