login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030523 A convolution triangle of numbers obtained from A001792. 10
1, 3, 1, 8, 6, 1, 20, 25, 9, 1, 48, 88, 51, 12, 1, 112, 280, 231, 86, 15, 1, 256, 832, 912, 476, 130, 18, 1, 576, 2352, 3276, 2241, 850, 183, 21, 1, 1280, 6400, 10976, 9424, 4645, 1380, 245, 24, 1, 2816, 16896, 34848, 36432, 22363, 8583, 2093, 316, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n,m) := s1p(3; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle). Signed version: (-1)^(n-m)*a(n,m) := s1(3; n,m).

With offset 0, this is T(n,k) = Sum_{i=0..n} C(n,i)*C(i+k+1,2k+1). Binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 22 2004

Subtriangle of the triangle T(n,k) given by (0, 3, -1/3, 4/3, 0, 0, 0, 0, 0, 0, 0, ... ) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2013

LINKS

Table of n, a(n) for n=1..55.

W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

W. Lang, First ten rows.

FORMULA

a(n, 1) = A001792(n-1).

Row sums = A039717(n).

a(n, m) = 2*(2*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1. G.f. for m-th column: (x*(1-x)/(1-2*x)^2)^m.

T(n,k) = 4*T(n-1,k) - 4*T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Feb 20 2013

Sum_{k=1..n} T(n,k)*2^(k-1) = A140766(n). -Philippe Deléham, Feb 20 2013

G.f.: (1-2*x)^2/((x^2-x)*y+(1-2*x)^2)-1. - Vladimir Kruchinin, Apr 28 2015

EXAMPLE

{1}; {3,1}; {8,6,1}; {20,25,9,1}; {48,88,51,12,1}; ...

(0, 3, -1/3, 4/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:

1

0   1

0   3   1

0   8   6   1

0  20  25   9   1

0  48  88  51  12   1

...

- Philippe Deléham, Feb 20 2013

MATHEMATICA

a[n_, m_] := SeriesCoefficient[(1-2*x)^2/((x^2-x)*y + (1-2*x)^2) - 1, {x, 0, n}, {y, 0, m}]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2015, after Vladimir Kruchinin *)

CROSSREFS

Cf. A057682 (alternating row sums).

Sequence in context: A188939 A062196 A103247 * A125662 A123965 A124025

Adjacent sequences:  A030520 A030521 A030522 * A030524 A030525 A030526

KEYWORD

easy,nonn,tabl

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 14:52 EST 2016. Contains 278877 sequences.