login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140766 a(n) = 6*a(n-1) - 6*a(n-2). 2
1, 5, 24, 114, 540, 2556, 12096, 57240, 270864, 1281744, 6065280, 28701216, 135815616, 642686400, 3041224704, 14391229824, 68100030720, 322252805376, 1524916647936, 7215983055360, 34146398444544, 161582492335104, 764616563343360, 3618204426049536 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Companion sequence = A030192 beginning (1, 6, 30, 144, 684,...).

LINKS

Table of n, a(n) for n=1..24.

Index entries for linear recurrences with constant coefficients, signature (6, -6).

FORMULA

a(n) = 6*a(n-1) - 6*a(n-2); a(1) = 1, a(2) = 5.

Term (1,1) of M^n, where M = the 3x3 matrix [1,1,1; 1,2,1; 3,1,3].

O.g.f.: x(1-x)/(1-6x+6x^2). a(n)=A030192(n-1)-A030192(n-2). - R. J. Mathar, May 31 2008

a(n)=(1/2)*[3-sqrt(3)]^n+(1/3)*sqrt(3)*[3+sqrt(3)]^n+(1/2)*[3+sqrt(3)]^n-(1/3)*[3-sqrt(3)]^n *sqrt(3), with n>=0 - Paolo P. Lava, Jun 25 2008

a(n) = Sum_{1<=k<=n} A030523(n,k)*2^(k-1). - Philippe Deléham, Feb 19 2013

EXAMPLE

a(5) = 540 = 6*a(4) - 6*a(3) = 6*(114) - 6*24.

a(5) = 540 = term (1,1) of X^5.

MATHEMATICA

LinearRecurrence[{6, -6}, {1, 5}, 30] (* Harvey P. Dale, Oct 01 2014 *)

CROSSREFS

Cf. A030192, A030523.

Sequence in context: A272257 A141223 A289783 * A026388 A242509 A057969

Adjacent sequences:  A140763 A140764 A140765 * A140767 A140768 A140769

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson and Roger L. Bagula, May 28 2008

EXTENSIONS

More terms from R. J. Mathar, May 31 2008

More terms from Harvey P. Dale, Oct 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 20:51 EDT 2019. Contains 325226 sequences. (Running on oeis4.)