login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027427
Number of distinct products ij with 0 <= i < j <= n.
4
0, 1, 2, 4, 7, 11, 14, 20, 25, 32, 37, 47, 52, 64, 71, 79, 88, 104, 112, 130, 140, 151, 162, 184, 193, 211, 224, 240, 253, 281, 292, 322, 338, 355, 372, 391, 404, 440, 459, 479, 494, 534, 550, 592, 612, 632, 655, 701, 718, 753, 775, 801, 824, 876
OFFSET
0,3
FORMULA
a(n) = A027428(n)+1. - T. D. Noe, Jan 16 2007
MAPLE
A027427 := proc(n)
local L, i, j ;
L := {};
for i from 0 to n do
for j from i+1 to n do
L := L union {i*j};
end do:
end do:
nops(L);
end proc: # R. J. Mathar, Jun 09 2016
MATHEMATICA
a[n_] := Table[i*j, {i, 0, n}, {j, i+1, n}] // Flatten // Union // Length;
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 03 2018 *)
PROG
(Haskell)
import Data.List (nub)
a027427 n = length $ nub [i*j | j <- [1..n], i <- [0..j-1]]
-- Reinhard Zumkeller, Jan 01 2012
(Python)
def A027427(n): return 1+len({i*j for i in range(1, n+1) for j in range(1, i)}) if n else 0 # Chai Wah Wu, Oct 13 2023
CROSSREFS
Cf. A027430, etc.
Sequence in context: A054850 A225154 A167805 * A306070 A262136 A330822
KEYWORD
nonn
AUTHOR
STATUS
approved