This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026851 a(n) = T(2n,n+2), T given by A026736. 1
 1, 6, 28, 121, 508, 2109, 8723, 36065, 149277, 618961, 2571503, 10704390, 44641793, 186492242, 780275596, 3269135406, 13713525610, 57588530626, 242068874444, 1018378855512, 4287501276956, 18062827159136, 76141329903018 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 FORMULA G.f.: (x * C(x)^5)/(1 - x/sqrt(1 - 4 * x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016 a(n) ~ (3 - sqrt(5))^5 * (2 + sqrt(5))^(n+2) / (32*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-4x])^5/(32 x^5 (1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *) PROG (PARI) my(x='x+O('x^30)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^5/(32*x^3*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019 (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^5/(32*x^3*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019 (Sage) a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^5/(32*x^3*(sqrt(1-4*x)-x))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 17 2019 CROSSREFS Cf. A000108, A026736. Sequence in context: A037131 A292485 A225417 * A267689 A300996 A181337 Adjacent sequences:  A026848 A026849 A026850 * A026852 A026853 A026854 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 07:29 EDT 2019. Contains 328315 sequences. (Running on oeis4.)