

A292485


pINVERT of the odd positive integers, where p(S) = 1  S  2 S^2.


1



1, 6, 28, 120, 504, 2128, 9016, 38208, 161864, 685648, 2904408, 12303264, 52117544, 220773552, 935211704, 3961620096, 16781691912, 71088388112, 301135245080, 1275629368416, 5403652717288, 22890240236144, 96964613663352, 410748694893888, 1739959393240264
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (p(0) + 1/p(S(x)))/x. The pINVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1  S gives the "INVERT" transform of s, so that pINVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.


LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5, 5, 7, 2)


FORMULA

G.f.: (((1 + x) (1 + 3 x^2))/((1 + 4 x + x^2) (1  x + 2 x^2))).
a(n) = 5*a(n1)  5*a(n2) + 7*a(n3) + 2*a(n4) for n >= 5.


MATHEMATICA

z = 60; s = x (x + 1)/(1  x)^2; p = 1  s  2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292485 *)


CROSSREFS

Cf. A005408, A292480.
Sequence in context: A171476 A171496 A037131 * A225417 A026851 A267689
Adjacent sequences: A292482 A292483 A292484 * A292486 A292487 A292488


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Oct 02 2017


STATUS

approved



