login
A026850
a(n) = T(2n,n+1), T given by A026736.
1
1, 4, 15, 57, 221, 872, 3489, 14113, 57575, 236457, 976271, 4047871, 16840879, 70259892, 293790127, 1230783085, 5164196117, 21696512073, 91254256589, 384165925259, 1618551762085, 6823801074549, 28785680471185, 121490461772347
OFFSET
1,2
LINKS
FORMULA
G.f.: (x * C(x)^3)/(1 - x/sqrt(1 - 4 * x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^3 * (2 + sqrt(5))^(n+1) / (8*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
MATHEMATICA
CoefficientList[ Series[(1-Sqrt[1-4x])^3/(8x^3(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^3/(8*x^2*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^3/(8*x^2*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
(Sage) a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^3/(8*x^2*(sqrt(1-4*x) -x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 17 2019
CROSSREFS
Sequence in context: A277924 A371777 A095930 * A109642 A307570 A164589
KEYWORD
nonn
STATUS
approved