login
A025898
Expansion of 1/((1-x^6)*(1-x^7)*(1-x^9)).
6
1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 2, 4, 3, 3, 5, 4, 3, 5, 4, 3, 6, 5, 4, 6, 5, 4, 7, 6, 5, 7, 6, 5, 8, 7, 6, 9, 7, 6, 9, 8, 7, 10, 9, 7, 11, 9, 8, 11, 10, 9, 12
OFFSET
0,19
COMMENTS
a(n) is the number of partitions of n into parts 6, 7, and 9. - Joerg Arndt, Jan 23 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1,0,1,0,0,0,-1,0,-1,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^6)*(1-x^7)*(1-x^9)), {x, 0, 100}], x] (* G. C. Greubel, Jan 22 2024 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^7)*(1-x^9)) )); // G. C. Greubel, Jan 22 2024
(SageMath)
def A025898_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^7)*(1-x^9)) ).list()
A025898_list(100) # G. C. Greubel, Jan 22 2024
KEYWORD
nonn
STATUS
approved