login
A025900
Expansion of 1/((1-x^6)*(1-x^7)*(1-x^11)).
6
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9
OFFSET
0,19
COMMENTS
a(n) is the number of partitions of n into parts 6, 7, and 11. - Michel Marcus, Jan 23 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1,0,0,0,1,0,-1,0,0,0,-1,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^6)(1-x^7)(1-x^11)), {x, 0, 120}], x] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^7)*(1-x^(11))) )); // G. C. Greubel, Jan 23 2024
(SageMath)
def A025900_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^7)*(1-x^(11)))).list()
A025900_list(100) # G. C. Greubel, Jan 23 2024
KEYWORD
nonn
STATUS
approved