login
A025902
Expansion of 1/((1-x^6)*(1-x^8)*(1-x^9)).
8
1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 3, 2, 2, 4, 1, 3, 3, 3, 3, 5, 2, 4, 4, 3, 3, 6, 3, 5, 5, 4, 4, 7, 3, 6, 6, 5, 5, 8, 4, 7, 7, 6, 6, 9, 5, 8, 8, 7, 7, 11, 6, 9, 9, 8, 8, 12, 7
OFFSET
0,19
COMMENTS
a(n) is the number of partitions of n into parts 6, 8, and 9. - Michel Marcus, Jan 23 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,0,1,1,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[ Series[1/((1-x^6)*(1-x^8)*(1-x^9)), {x, 0, 100}], x] (* G. C. Greubel, Jan 23 2024 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^8)*(1-x^9)) )); // G. C. Greubel, Jan 23 2024
(SageMath)
def A025902_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^8)*(1-x^9))).list()
A025902_list(100) # G. C. Greubel, Jan 23 2024
KEYWORD
nonn
STATUS
approved