The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025250 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-3)*a(3) for n >= 4. 10
 0, 1, 1, 0, 1, 1, 1, 3, 3, 6, 11, 15, 31, 50, 85, 161, 267, 490, 883, 1548, 2863, 5127, 9307, 17116, 31021, 57123, 104963, 192699, 356643, 658034, 1218517, 2262079, 4196895, 7812028, 14549655, 27126118, 50671255, 94697293, 177220411, 332015747 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Number of lattice paths from (0,0) to (n-3,0) that stay weakly in the first quadrant and such that each step is either U=(1,1),D=(2,-1), or H=(2,0). E.g. a(10)=6 because we have HHUD, HUDH, HUHD, UDHH, UHDH and UHHD. - Emeric Deutsch, Dec 23 2003 Hankel transform of a(n+2) is Somos-4 variant A050512. - Paul Barry, Jul 05 2009 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019). Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5. Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018. FORMULA G.f.: (1 +x^2 -sqrt(1-2*x^2-4*x^3+x^4))/2. - Michael Somos, Jun 08 2000 G.f.: x^2+x^3*(1/(1-x^2))c(x^3/(1-x^2)^2) where c(x) is the g.f. of A000108. - Paul Barry, May 20 2009 a(n+2) = Sum_{k=0..n} binomial((n+k)/2, 2*k)(1+(-1)^(n-k))*A000108(k)/2}. - Paul Barry, Jul 06 2009 a(n) = Sum_{k=0..n} binomial(k+1,n-2*k-1)*binomial(n-k-2,k)/(k+1). - Vladimir Kruchinin, Nov 22 2014 G.f.: K_{k>=0} (-x^3)/(x^2-1), where K is the Gauss notation for a continued fraction. - Benedict W. J. Irwin, Oct 11 2016 a(n) ~ sqrt(1 - r^2 - r^3) * (2*r + 4*r^2 - r^3)^n / (2*sqrt(Pi)*n^(3/2)), where r = 0.51361982956383128341133963576515885989214886200017191578885... is the root of the equation 1 - 2*r^2 - 4*r^3 + r^4 = 0. - Vaclav Kotesovec, Jul 03 2021 MATHEMATICA Rest[CoefficientList[Series[(1+x^2-Sqrt[1-2*x^2-4*x^3+x^4])/2, {x, 0, 40}], x]] (* Harvey P. Dale, Apr 05 2011 *) Rest@CoefficientList[Series[x^2+ContinuedFractionK[-x^3, x^2-1, {k, 0, 40}], {x, 0, 40}], x] (* Benedict W. J. Irwin, Oct 13 2016 *) PROG (PARI) a(n)=polcoeff((x^2-sqrt(1-2*x^2-4*x^3+x^4+x*O(x^n)))/2, n) (Haskell) a025250 n = a025250_list !! (n-1) a025250_list = 0 : 1 : 1 : f 1 [1, 1, 0] where f k xs = x' : f (k+1) (x':xs) where x' = sum \$ zipWith (*) a025250_list \$ take k xs -- Reinhard Zumkeller, Nov 03 2011 (Maxima) a(n):=sum((binomial(k+1, n-2*k-1)*binomial(n-k-2, k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Nov 22 2014 */ (Magma) m:=45; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1 +x^2 -Sqrt(1-2*x^2-4*x^3+x^4))/2 )); // G. C. Greubel, Feb 23 2019 (Sage) a=((1+x^2 -sqrt(1-2*x^2-4*x^3+x^4))/2).series(x, 45).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 23 2019 (GAP) List([0..45], n-> Sum([0..n], k-> binomial(k+1, n-2*k-1)*binomial(n-k-2, k)/(k+1) )) # G. C. Greubel, Feb 23 2019 CROSSREFS Sequence in context: A169944 A110952 A339539 * A326498 A094305 A057963 Adjacent sequences: A025247 A025248 A025249 * A025251 A025252 A025253 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 16:51 EST 2022. Contains 358588 sequences. (Running on oeis4.)