The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050512 a(n) = (a(n-1)*a(n-3) - a(n-2)^2) / a(n-4), with a(0) = 0, a(1) = a(2) = a(3) = 1, a(4) = -1. 5
 0, 1, 1, 1, -1, -2, -3, -1, 7, 11, 20, -19, -87, -191, -197, 1018, 2681, 8191, -5841, -81289, -261080, -620551, 3033521, 14480129, 69664119, -2664458, -1612539083, -7758440129, -37029252553, 181003520899, 1721180313660, 12437589708389, 19206818781913 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS From Paul Barry, May 31 2010: (Start) a(n+1) is (-1)^binomial(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x/(1+x^2/(1-x^2/(1-2x^2/(1+(3/4)x^2/(1+(2/9)x^2/(1+21)x^2/(1-... where -1,1,2,-3/4,-2/9,21,... are the x-coordinates of the multiples of z=(0,0) on the elliptic curve E: y^2 - 2xy - y = x^3-x. (End) This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = -1. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..250 Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5. Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018. Clark Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17. FORMULA a(2*n + 1) = a(n + 2) * a(n)^3 - a(n - 1) * a(n + 1)^3 for all n in Z. a(2*n) = a(n + 2) * a(n) * a(n - 1)^2 - a(n) * a(n - 2) * a(n + 1)^2 for all n in Z. 0 = a(n)*a(n+5) - a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014 0 = a(n)*a(n+6) + a(n+1)*a(n+5) - 2*a(n+2)*a(n+4) for all n in Z. - Michael Somos, Jul 07 2014 EXAMPLE G.f. = x + x^2 + x^3 - x^4 - 2*x^5 - 3*x^6 - x^7 + 7*x^8 + 11*x^9 + 20*x^10 + ... MAPLE P:= proc(n) option remember; if n < 4 then 1 else if n=4 then -1 else (procname(n-1)*procname(n-3)-procname(n-2)^2)/procname(n-4); fi; fi; end: seq(P(n), n=0..30); # Paolo P. Lava, Sep 27 2018, after Robert Israel at A018896 MATHEMATICA a[n_?OddQ] := a[n] = a[(n-1)/2]^3*a[(n+3)/2] - a[(n-3)/2]*a[(n+1)/2]^3; a[n_?EvenQ] := a[n] = (a[n/2-1]^2*a[n/2+2] - a[n/2-2]*a[n/2+1]^2)*a[n/2]; a[0] = 0; a[1] = a[2] = a[3] = 1; a[4] = -1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 29 2011 *) Join[{0}, RecurrenceTable[{a[1]==a[2]==a[3]==1, a[4]==-1, a[n]==(a[n-1] a[n-3]-a[n-2]^2)/a[n-4]}, a, {n, 30}]] (* Harvey P. Dale, Mar 23 2012 *) PROG (PARI) an=vector(200); for(n=1, 4, an[ n ]=[ 1, 1, 1, -1 ][ n ]); for(n=5, length(an), an[ n ]=(an[ n-1 ]*an[ n-3 ]-an[ n-2 ]^2)/an[ n-4 ]); a(n) =sign(n)*an[ abs(n)+(n==0) ] (PARI) {a(n) = my(an); if( n<0, -a(-n), if( n==0, 0, an = vector( max(4, n), i, 1); an[4] = -1; for( k=5, n, an[k] = (an[k-1] * an[k-3] - an[k-2]^2) / an[k-4]); an[n]))}; /* Michael Somos, Jul 07 2014 */ (Haskell) a050512 n = a050512_list !! n a050512_list = 0 : 1 : 1 : 1 : (-1) : zipWith div (zipWith (-) (zipWith (*) (drop 4 a050512_list) (drop 2 a050512_list)) (map (^ 2) (drop 3 a050512_list))) (tail a050512_list) -- Reinhard Zumkeller, Nov 02 2011 CROSSREFS Cf. A006769. Sequence in context: A247370 A161847 A101175 * A107102 A103364 A104027 Adjacent sequences: A050509 A050510 A050511 * A050513 A050514 A050515 KEYWORD sign,easy,nice AUTHOR Michael Somos, Dec 28 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)