|
|
A024049
|
|
a(n) = 5^n - 1.
|
|
28
|
|
|
0, 4, 24, 124, 624, 3124, 15624, 78124, 390624, 1953124, 9765624, 48828124, 244140624, 1220703124, 6103515624, 30517578124, 152587890624, 762939453124, 3814697265624, 19073486328124, 95367431640624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Numbers n for which the expression 5^n/(n+1) is an integer. - Paolo P. Lava, May 29 2006
Numbers whose base 5 representation is 44444.......4. - Zerinvary Lajos, Feb 03 2007
For n > 0, a(n) is the sum of divisors of 3 * 5^(n-1). - Patrick J. McNab, May 27 2017
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Index entries for linear recurrences with constant coefficients, signature (6,-5).
|
|
FORMULA
|
G.f.: 1/(1-5*x)-1/(1-x). - Mohammad K. Azarian, Jan 14 2009
E.g.f.: e^(5*x)-e^x. - Mohammad K. Azarian, Jan 14 2009
a(n+1) = 5*a(n) + 4. - Reinhard Zumkeller, Nov 22 2009
a(n) = Sum_{i=1..n} 4^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A000351(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248722. - Amiram Eldar, Nov 13 2020
|
|
EXAMPLE
|
For n=5, a(5) = 4*5 + 16*10 + 64*10 + 256*5 + 1024*1 = 3124. - Bruno Berselli, Nov 11 2015
|
|
MATHEMATICA
|
5^Range[0, 50]-1 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
LinearRecurrence[{6, -5}, {0, 4}, 30] (* Harvey P. Dale, Apr 06 2019 *)
|
|
PROG
|
(MAGMA) [5^n-1: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
(PARI) a(n)=5^n-1 \\ Charles R Greathouse IV, Apr 17 2012
|
|
CROSSREFS
|
Cf. A000351, A248722.
Sequence in context: A295506 A098224 A339123 * A103455 A289715 A174443
Adjacent sequences: A024046 A024047 A024048 * A024050 A024051 A024052
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|