login
A024048
a(n) = 4^n - n^12.
1
1, 3, -4080, -531377, -16776960, -244139601, -2176778240, -13841270817, -68719411200, -282429274337, -999998951424, -3138424182417, -8916083671040, -23298018013617, -56693643939840, -129745264148801, -281470681743360, -582605057360577, -1156762661949440
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (17,-130,598,-1859,4147,-6864,8580,-8151,5863,-3146,1222,-325,53,-4).
FORMULA
From Colin Barker, Jan 30 2018: (Start)
G.f.: (1 - 14*x - 4001*x^2 - 462225*x^3 - 8273886*x^4 - 25569021*x^5 + 102763326*x^6 + 487535142*x^7 + 583731957*x^8 + 255085496*x^9 + 40272755*x^10 + 1908923*x^11 + 16344*x^12 + 3*x^13) / ((1 - x)^13*(1 - 4*x)).
a(n) = 17*a(n-1) - 130*a(n-2) + 598*a(n-3) - 1859*a(n-4) + 4147*a(n-5) - 6864*a(n-6) + 8580*a(n-7) - 8151*a(n-8) + 5863*a(n-9) - 3146*a(n-10) + 1222*a(n-11) - 325*a(n-12) + 53*a(n-13) - 4*a(n-14) for n>13.
(End)
PROG
(Magma) [4^n-n^12: n in [0..30]]; // Vincenzo Librandi, Jul 02 2011
(PARI) Vec((1 - 14*x - 4001*x^2 - 462225*x^3 - 8273886*x^4 - 25569021*x^5 + 102763326*x^6 + 487535142*x^7 + 583731957*x^8 + 255085496*x^9 + 40272755*x^10 + 1908923*x^11 + 16344*x^12 + 3*x^13) / ((1 - x)^13*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 30 2018
CROSSREFS
Sequence in context: A089895 A116213 A136544 * A094319 A362536 A229766
KEYWORD
sign,easy
STATUS
approved