OFFSET
1,1
COMMENTS
Partial sums of A073532. - Lekraj Beedassy, Aug 02 2008
No number with more than 10 digits can have all of its decimal digits distinct, and no number that uses all ten distinct decimal digits can be prime (because the sum of all ten decimal digits is 45 so any such number is divisible by 3). Therefore, every term in the sequence from and after a(9) is the same, i.e., 283086. - Harvey P. Dale, Dec 12 2010
FORMULA
a(n) = 283086 for n >= 9.
MATHEMATICA
okQ[n_]:=Max[DigitCount[n]]==1
Table[Length[Select[Prime[Range[PrimePi[10^i]]], okQ]], {i, 9}] (* Harvey P. Dale, Dec 12 2010 *)
PROG
(Python)
from sympy import sieve
def distinct_digs(n): s = str(n); return len(s) == len(set(s))
def aupton(terms):
ps, alst = 0, []
for n in range(1, terms+1):
if n >= 10: alst.append(ps); continue
ps += sum(distinct_digs(p) for p in sieve.primerange(10**(n-1), 10**n))
alst.append(ps)
return alst
print(aupton(35)) # Michael S. Branicky, Apr 24 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Oct 26 2004
STATUS
approved