OFFSET
0,2
COMMENTS
A transform of 5^n under the matrix A103452.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Index entries for linear recurrences with constant coefficients, signature (6,-5).
FORMULA
G.f.: (1 - 2*x + 5*x^2)/((1-x)*(1-5*x)).
a(n) = Sum_{k=0..n} A103452(n, k)*5^k.
a(n) = Sum_{k=0..n} (2*0^(n-k) - 1)*0^(k*(n-k))*5^k.
a(n) = A024049(n), n > 0. - R. J. Mathar, Aug 30 2008
E.g.f.: 1 - exp(x) + exp(5*x). - G. C. Greubel, Jun 21 2021
MATHEMATICA
Join[{1}, 5^Range[20]-1] (* Harvey P. Dale, Nov 15 2011 *)
PROG
(Magma) [0^n+5^n-1: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
(Sage) [1]+[5^n -1 for n in [1..40]] # G. C. Greubel, Jun 21 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 06 2005
STATUS
approved