login
A022748
Expansion of 1/Product_{m>=1} (1 - m*q^m)^24.
2
1, 24, 348, 3824, 34974, 279360, 2007496, 13236528, 81211749, 468506720, 2561834052, 13362262272, 66823739654, 321763781664, 1497035306088, 6750151072304, 29572851319506, 126163172338056, 525134328872668
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 24, g(n) = n. - Seiichi Manyama, Dec 29 2017
LINKS
FORMULA
a(0) = 1; a(n) = (24/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 17 2023
CROSSREFS
Column k=24 of A297328.
Cf. A078308.
Sequence in context: A077527 A083766 A056634 * A288968 A269029 A004325
KEYWORD
nonn
STATUS
approved