login
A022746
Expansion of 1/Product_{m>=1} (1 - m*q^m)^22.
2
1, 22, 297, 3058, 26334, 198748, 1353275, 8474202, 49475074, 272055454, 1420063656, 7079791314, 33881645721, 156287683310, 697257244178, 3017396237922, 12697675601127, 52071958360466, 208490926189117
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 22, g(n) = n. - Seiichi Manyama, Aug 16 2023
LINKS
FORMULA
a(0) = 1; a(n) = (22/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023
CROSSREFS
Column k=22 of A297328.
Cf. A078308.
Sequence in context: A211832 A211559 A333063 * A125457 A155785 A077525
KEYWORD
nonn
STATUS
approved