login
A022745
Expansion of 1/Product_{m>=1} (1 - m*q^m)^21.
2
1, 21, 273, 2716, 22659, 165984, 1098615, 6695559, 38085117, 204218630, 1040291595, 5064987207, 23686610269, 106828575357, 466231753944, 1974651627802, 8136148603086, 32681975601387, 128221943065839
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 21, g(n) = n. - Seiichi Manyama, Aug 16 2023
LINKS
FORMULA
a(0) = 1; a(n) = (21/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023
CROSSREFS
Column k=21 of A297328.
Cf. A078308.
Sequence in context: A360499 A228215 A032535 * A225967 A334529 A004324
KEYWORD
nonn
STATUS
approved