login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020712 Pisot sequences E(5,8), P(5,8). 1
5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60,.. - R. J. Mathar, Aug 10 2012

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (1,1).

FORMULA

a(n) = Fib(n+5). a(n) = a(n-1) + a(n-2).

O.g.f.: (5+3x)/(1-x-x^2). a(n)=A020701(n+1). - R. J. Mathar, May 28 2008

a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-11+5*sqrt(5))+(1+sqrt(5))^n*(11+5*sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016

MATHEMATICA

CoefficientList[Series[(-3 z - 5)/(z^2 + z - 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)

LinearRecurrence[{1, 1}, {5, 8}, 40] (* Harvey P. Dale, Dec 28 2013 *)

PROG

(PARI) a(n)=fibonacci(n+5) \\ Charles R Greathouse IV, Jan 17 2012

CROSSREFS

Subsequence of A020701 and hence A020695, A000045. See A008776 for definitions of Pisot sequences.

Trisections: A015448, A014445, A033887.

Sequence in context: A020687 A035423 A135455 * A182506 A111321 A020736

Adjacent sequences:  A020709 A020710 A020711 * A020713 A020714 A020715

KEYWORD

nonn,easy

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.