%I #34 Jun 05 2016 22:53:29
%S 5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,
%T 17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,
%U 2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141
%N Pisot sequences E(5,8), P(5,8).
%C Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60,.. - _R. J. Mathar_, Aug 10 2012
%H Colin Barker, <a href="/A020712/b020712.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F a(n) = Fib(n+5). a(n) = a(n-1) + a(n-2).
%F O.g.f.: (5+3x)/(1-x-x^2). a(n)=A020701(n+1). - _R. J. Mathar_, May 28 2008
%F a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-11+5*sqrt(5))+(1+sqrt(5))^n*(11+5*sqrt(5))))/sqrt(5). - _Colin Barker_, Jun 05 2016
%t CoefficientList[Series[(-3 z - 5)/(z^2 + z - 1), {z, 0, 200}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jun 11 2011 *)
%t LinearRecurrence[{1,1},{5,8},40] (* _Harvey P. Dale_, Dec 28 2013 *)
%o (PARI) a(n)=fibonacci(n+5) \\ _Charles R Greathouse IV_, Jan 17 2012
%Y Subsequence of A020701 and hence A020695, A000045. See A008776 for definitions of Pisot sequences.
%Y Trisections: A015448, A014445, A033887.
%K nonn,easy
%O 0,1
%A _David W. Wilson_