OFFSET
0,1
COMMENTS
Pisano period lengths: A001175. - R. J. Mathar, Aug 10 2012
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (x)).
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
a(n) = Fibonacci(n+3); a(n) = a(n-1) + a(n-2).
G.f.: (2+x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5))+(1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016
E.g.f.: 2*(2*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, Jun 05 2016
MATHEMATICA
CoefficientList[Series[(-x - 2)/(x^2 + x - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{1, 1}, {2, 3}, 40] (* or *) Fibonacci[Range[3, 50]] (* Harvey P. Dale, Nov 22 2012 *)
PROG
(Magma) [Fibonacci(n+3): n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
(PARI) a(n)=fibonacci(n+3) \\ Charles R Greathouse IV, Jan 17 2012
(PARI) Vec((2+x)/(1-x-x^2) + O(x^40)) \\ Colin Barker, Jun 05 2016
(GAP)
A020695:=List([0..10^3], n->Fibonacci(n+3)); # Muniru A Asiru, Sep 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved