login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132916 a(0)=0; a(1)=1; a(n) = Sum_{k=1..floor(n^(1/3))} a(n-k) for n >= 2. 3
0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 21892, 39603, 72441, 133936, 245980, 452357, 832273, 1530610, 2815240, 5178123, 9523973, 17517336, 32219432, 59260741, 108997509, 200477682 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Lim_{n->infinity} a(n+1)/a(n) = 2. Contrast with Fibonacci sequence. Also a(n+1)/a(n) = 2 iff n+1 >= 8 is a cube.

Up to a(26) = 10946, but not beyond, the sequence consists of the Fibonacci numbers A000045(0..21). - M. F. Hasler, May 10 2017

LINKS

Robert Israel, Table of n, a(n) for n = 0..3345

FORMULA

a(n) = Sum_{k=1..floor(n^(1/3))} a(n-k) for n >= 2; a(0)=0; a(1)=1.

EXAMPLE

a(27) = a(24) + a(25) + a(26) = 4181 + 6765 + 10946 = 21892.

MAPLE

f:= proc(n) option remember;

add(procname(n-k), k=1..floor(n^(1/3)))

end proc:

f(0):= 0: f(1):= 1:

map(f, [$0..50]); # Robert Israel, Dec 16 2018

MATHEMATICA

a[n_] := a[n] = If[n < 2, n, Sum[a[n - k], {k, Floor[n^(1/3)]}]]; Array[a, 43, 0] (* Michael De Vlieger, May 10 2017 *)

CROSSREFS

Cf. A000045, A132915.

Sequence in context: A000045 A020695 A212804 * A274163 A177194 A177247

Adjacent sequences:  A132913 A132914 A132915 * A132917 A132918 A132919

KEYWORD

nonn

AUTHOR

Rick L. Shepherd, Sep 04 2007

EXTENSIONS

Incorrect g.f. and programs deleted by Colin Barker, Dec 17 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 19:58 EST 2019. Contains 319251 sequences. (Running on oeis4.)