login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020483 Least prime p such that p+2n is also prime. 27
2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13, 11, 31, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

It is conjectured that a(n) always exists. a(n) has been computed for n < 5 * 10^11, with largest value a(248281210271) = 3307. - Jens Kruse Andersen, Nov 28 2004

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

Jens Kruse Andersen, Prime gaps (not necessarily consecutive), Yahoo! group "primenumbers", Nov 26 2004.

FORMULA

If a(n) exists, a(n) < 2n, which of course is a great overestimate. - T. D. Noe, Jul 16 2002

a(n) = A087711(n) - n. - Zak Seidov, Nov 28 2007

a(n) = A020484(n) - 2n. - Zak Seidov, May 29 2014

a(n) = 2 if and only if n = 0. - Alonso del Arte, Mar 14 2018

EXAMPLE

Given n = 2, we see that 2 + 2n = 6 = 2 * 3, but 3 + 2n = 7, which is prime, so a(2) = 3.

Given n = 3, we see that 2 + 2n = 8 = 2^3 and 3 + 2n = 9 = 3^2, but 5 + 2n = 11, which is prime, so a(3) = 5.

MAPLE

A020483 := proc(n)

    local p;

    p := 2;

    while true do

        if isprime(p+2*n) then

            return p;

        end if;

        p := nextprime(p) ;

    end do:

end proc:

seq(A020483(n), n=0..40); # R. J. Mathar, Sep 23 2016

MATHEMATICA

Table[j = 1; found = False; While[!found, j++; found = PrimeQ[Prime[j] + 2i]]; Prime[j], {i, 200}]

leastPrimep2n[n_] := Block[{k = 1, p, q = 2 n}, While[p = Prime@k; !PrimeQ[p + q], k++]; p]; Array[leastPrimep2n, 102] (* Robert G. Wilson v, Mar 26 2008 *)

PROG

(PARI) a(n)=forprime(p=2, , if(isprime(p+2*n), return(p))) \\ Charles R Greathouse IV, Mar 19 2014

(Haskell)

a020483 n = head [p | p <- a000040_list, a010051' (p + 2 * n) == 1]

-- Reinhard Zumkeller, Nov 29 2014

(GAP) P:=Filtered([1..10000], IsPrime);;

a:=List(List([0..110], n->Filtered(P, i->IsPrime(i+2*n))), Minimum); # Muniru A Asiru, Mar 26 2018

CROSSREFS

Cf. A087711, A101042, A101043, A101044, A101045, A101046.

Cf. A101045, A239392 (record values).

Cf. A000040, A010051, A020484.

It is likely that A054906 is an identical sequence, although this seems to have not yet been proved. - N. J. A. Sloane, Feb 06 2017

Sequence in context: A063256 A229703 A131320 * A119912 A076368 A279931

Adjacent sequences:  A020480 A020481 A020482 * A020484 A020485 A020486

KEYWORD

nonn

AUTHOR

David W. Wilson

EXTENSIONS

a(0)=2 added by N. J. A. Sloane, Apr 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 22:28 EDT 2019. Contains 328134 sequences. (Running on oeis4.)