login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A018240
Number of rational knots (or two-bridge knots) with n crossings (up to mirroring).
12
1, 1, 2, 3, 7, 12, 24, 45, 91, 176, 352, 693, 1387, 2752, 5504, 10965, 21931, 43776, 87552, 174933, 349867, 699392, 1398784, 2796885, 5593771, 11186176, 22372352, 44741973, 89483947, 178962432, 357924864, 715838805, 1431677611, 2863333376, 5726666752
OFFSET
3,3
REFERENCES
S. Jablan and R. Sazdanović, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
LINKS
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TK_n).
Taizo Kanenobu and Toshio Sumi, Polynomial Invariants of 2-Bridge Knots through 22 Crossings, Math. Comp. 60 (1993), 771-778, S17 (see Table 2).
P.-V. Koseleff, D. Pecker, Conway polynomials of two-bridge links, arXiv:1011.5992 [math.GT], 2010-2012 (only version 1 contains tables).
P.-V. Koseleff, D. Pecker, On Alexander-Conway polynomials of two-bridge links, Journal of Symbolic Computation 68 (2015), 215-229.
A. Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, 310 (2007), 491-525.
FORMULA
a(n) = - a(n-1) + 5*(a(n-2)+a(n-3)) - 2*(a(n-4)+a(n-5)) - 8*(a(n-6)+a(n-7)). [Originally contributed as a separate sequence entry by Thomas A. Gittings, Dec 11 2003; see Stoimenow, Corollary 5.1 for proof]
G.f.: (1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2)). - R. J. Mathar, Sep 08 2008
EXAMPLE
The a(7)=7 rational knots with 7 crossings are 7, 52, 43, 322, 313, 2212, 21112. All the rational knots are listed in A122495.
MATHEMATICA
LinearRecurrence[{-1, 5, 5, -2, -2, -8, -8}, {1, 1, 2, 3, 7, 12, 24}, 50] (* Harvey P. Dale, Sep 03 2013 *)
CoefficientList[Series[(1 - 2 x^2 - x^3 - x^4)/((1 - 2 x) (1 + x) (1 - 2 x^2) (1 + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(PARI) Vec((1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2))+O(x^66)) \\ Joerg Arndt, Aug 07 2014
CROSSREFS
Cf. A018240 = number of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence (the difference between the number of rational links and knots), A090597 = rational links with n crossings, A329908, A336398.
Sequence in context: A036538 A341407 A108742 * A090596 A355385 A321838
KEYWORD
nice,easy,nonn
AUTHOR
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
EXTENSIONS
Edited by Andrey Zabolotskiy, Jun 18 2020
STATUS
approved