OFFSET
3,3
REFERENCES
S. Jablan and R. Sazdanović, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..1000
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TK_n).
Taizo Kanenobu and Toshio Sumi, Polynomial Invariants of 2-Bridge Knots through 22 Crossings, Math. Comp. 60 (1993), 771-778, S17 (see Table 2).
P.-V. Koseleff, D. Pecker, Conway polynomials of two-bridge links, arXiv:1011.5992 [math.GT], 2010-2012 (only version 1 contains tables).
P.-V. Koseleff, D. Pecker, On Alexander-Conway polynomials of two-bridge links, Journal of Symbolic Computation 68 (2015), 215-229.
A. Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, 310 (2007), 491-525.
Index entries for linear recurrences with constant coefficients, signature (-1,5,5,-2,-2,-8,-8).
FORMULA
a(n) = - a(n-1) + 5*(a(n-2)+a(n-3)) - 2*(a(n-4)+a(n-5)) - 8*(a(n-6)+a(n-7)). [Originally contributed as a separate sequence entry by Thomas A. Gittings, Dec 11 2003; see Stoimenow, Corollary 5.1 for proof]
G.f.: (1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2)). - R. J. Mathar, Sep 08 2008
EXAMPLE
The a(7)=7 rational knots with 7 crossings are 7, 52, 43, 322, 313, 2212, 21112. All the rational knots are listed in A122495.
MATHEMATICA
LinearRecurrence[{-1, 5, 5, -2, -2, -8, -8}, {1, 1, 2, 3, 7, 12, 24}, 50] (* Harvey P. Dale, Sep 03 2013 *)
CoefficientList[Series[(1 - 2 x^2 - x^3 - x^4)/((1 - 2 x) (1 + x) (1 - 2 x^2) (1 + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(PARI) Vec((1-2*x^2-x^3-x^4)*x^3/((1-2*x)*(1+x)*(1-2*x^2)*(1+x^2))+O(x^66)) \\ Joerg Arndt, Aug 07 2014
CROSSREFS
KEYWORD
nice,easy,nonn
AUTHOR
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
EXTENSIONS
Edited by Andrey Zabolotskiy, Jun 18 2020
STATUS
approved