The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090597 a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)). 6
 0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,4 COMMENTS Arises from a conjecture about sequence of rational links with n crossings. Conjecture derived from: s(n) = k(n) + l(n): definition of sum of rational knots (k) and links (l) s(n) = 6s(n-2) -8s(n-4): see A005418 (Jablan's observation) d(n) = d(n-2) + 2d(n-4): see A001045 (modified Jacobsthal sequence) l(n) = k(n-1) + d(n): conjecture. a(n) is the number of rational (2-component) links. - Slavik Jablan, Dec 26 2003 Also yields the number of meanders, reduced by symmetry, on an n X 3 rectangle (see A200893). - Jon Wild, Nov 25 2011 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 3..1000 C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n). Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4). FORMULA a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - R. J. Mathar, Nov 23 2011 G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - R. J. Mathar, Nov 23 2011 a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - David Scambler, Dec 12 2011 MATHEMATICA f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *) J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *) LinearRecurrence[{1, 3, -1, 0, -2, -4}, {0, 1, 1, 3, 3, 8}, 30] (* Harvey P. Dale, Nov 12 2013 *) PROG (Haskell) a090597 n = a090597_list !! (n-3) a090597_list = [0, 1, 1, 3, 3, 8, 12] ++ zipWith (-)    (drop 4 \$ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))    (zipWith (+) (drop 2 \$ map (* 2) zs) (map (* 8) zs))    where zs = zipWith (+) a090597_list \$ tail a090597_list -- Reinhard Zumkeller, Nov 24 2011 CROSSREFS This is the difference between A005418 and A018240. Cf. A018240 = sequence of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence, A329908, A336398. Cf. A200893, and see the third column of the triangle read by rows there. Sequence in context: A276552 A213030 A303902 * A304887 A126073 A126592 Adjacent sequences:  A090594 A090595 A090596 * A090598 A090599 A090600 KEYWORD easy,nonn AUTHOR Thomas A. Gittings, Dec 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 04:01 EST 2020. Contains 338781 sequences. (Running on oeis4.)