login
A017672
Denominator of sum of -4th powers of divisors of n.
3
1, 16, 81, 256, 625, 648, 2401, 4096, 6561, 5000, 14641, 3456, 28561, 19208, 50625, 65536, 83521, 104976, 130321, 80000, 194481, 117128, 279841, 165888, 390625, 228488, 531441, 43904, 707281, 202500, 923521, 1048576, 1185921, 39304, 1500625, 559872, 1874161
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^4*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
EXAMPLE
1, 17/16, 82/81, 273/256, 626/625, 697/648, 2402/2401, 4369/4096, 6643/6561, 5321/5000, ...
MATHEMATICA
Table[Denominator[DivisorSigma[-4, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
Table[Denominator[DivisorSigma[4, n]/n^4], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) vector(40, n, denominator(sigma(n, 4)/n^4)) \\ G. C. Greubel, Nov 08 2018
(Magma) [Denominator(DivisorSigma(4, n)/n^4): n in [1..40]]; // G. C. Greubel, Nov 08 2018
CROSSREFS
Cf. A017671.
Sequence in context: A277562 A217709 A257854 * A055013 A080150 A000583
KEYWORD
nonn,frac
STATUS
approved