login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017675 Numerator of sum of -6th powers of divisors of n. 3
1, 65, 730, 4161, 15626, 23725, 117650, 266305, 532171, 101569, 1771562, 506255, 4826810, 3823625, 2281396, 17043521, 24137570, 34591115, 47045882, 32509893, 85884500, 57575765, 148035890, 97201325, 244156251, 12067025, 387952660, 244770825, 594823322 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^6*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018

EXAMPLE

1, 65/64, 730/729, 4161/4096, 15626/15625, 23725/23328, 117650/117649, 266305/262144, ...

MATHEMATICA

A017675[n_Integer] := Numerator[DivisorSigma[-6, n]]; Table[A017675[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)

Table[Numerator[DivisorSigma[6, n]/n^6], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)

PROG

(PARI) vector(20, n, numerator(sigma(n, 6)/n^6)) \\ G. C. Greubel, Nov 07 2018

(MAGMA) [Numerator(DivisorSigma(6, n)/n^6): n in [1..20]]; // G. C. Greubel, Nov 07 2018

CROSSREFS

Cf. A017676.

Sequence in context: A088677 A321562 A034680 * A013954 A294301 A116277

Adjacent sequences:  A017672 A017673 A017674 * A017676 A017677 A017678

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 13:13 EST 2021. Contains 341569 sequences. (Running on oeis4.)