This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016189 a(n) = 10^n - 9^n. 15
 0, 1, 19, 271, 3439, 40951, 468559, 5217031, 56953279, 612579511, 6513215599, 68618940391, 717570463519, 7458134171671, 77123207545039, 794108867905351, 8146979811148159, 83322818300333431, 849905364703000879, 8649148282327007911, 87842334540943071199, 890581010868487640791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Almost all numbers contain any given sequence of digits (in any base) [Theorem 143 of Hardy and Wright]. a(7) = 5217031, more than 52% of the numbers < 10^7 contain any given nonzero decimal digit. - Frank Ellermann, May 30 2001 a(n) gives the number of integers from 0 to 10^n-1 which contain (at least) any one given decimal digit except 0. - Michael Taktikos, Aug 24 2004 These are the numerators of a(n)=(integral{x=0 to 0.2} (1-0.5*x)^n dx). E.g., a(3)=3439/20000. The denominators are b(n)=5*(n+1)*10^n. E.g., b(3)=20000. - Al Hakanson (hawkuu(AT)excite.com), Feb 22 2004 Binomial transforms of sequences defined by a(n)=(C+1)^n-C^n are the sequences (C+2)^n-(C+1)^n. The binomial transform of this here is in A016195, for example. - R. J. Mathar, Nov 27 2008 First differences are given in A088924. - M. F. Hasler, May 04 2015 REFERENCES G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 143 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..130 Alexander Bogomolny, Almost every integer has a digit 3 in it James Grime, 3 is everywhere, Numberphile video Index entries for linear recurrences with constant coefficients, signature (19, -90). FORMULA G.f.: x/((1-9x)(1-10x)). a(0) = 0, a(1) = 1, then a(n+1) = 9*a(n) + 10^n. a(n) = 19*a(n-1) - 90*a(n-2), n>1; a(0)=0, a(1)=1 . - Philippe Deléham, Jan 01 2009 E.g.f.: e^(10*x) - e^(9*x). - Mohammad K. Azarian, Jan 14 2009 MATHEMATICA f[n_]:=10^n-9^n; f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*) PROG (MAGMA) [10^n - 9^n: n in [0..20]]; // Vincenzo Librandi, Apr 26 2011 (Haskell) a016189 n = 10 ^ n - 9 ^ n a016189_list = 0 : zipWith (+) (map (* 9) a016189_list) a011557_list -- Reinhard Zumkeller, Apr 03 2015 (PARI) a(n)=10^n-9^n \\ M. F. Hasler, May 04 2015 CROSSREFS Base 2: A000225, 3: A001047, 4: A005061, 5: A005060, 6: A005062, base 7: A016169, 8: A016177, 9: A016185 11: A016195 12: A016197. Equals A155671 - 1. Cf. A011557, A011533. Sequence in context: A142899 A083004 A139739 * A125476 A016248 A199819 Adjacent sequences:  A016186 A016187 A016188 * A016190 A016191 A016192 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.