login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005060 a(n) = 5^n - 4^n. 15
0, 1, 9, 61, 369, 2101, 11529, 61741, 325089, 1690981, 8717049, 44633821, 227363409, 1153594261, 5835080169, 29443836301, 148292923329, 745759583941, 3745977788889, 18798608421181, 94267920012849 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also, the number of numbers with at most n digits whose largest digit equals 4. - M. F. Hasler, May 03 2015

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..200

X. Acloque, Polynexus Numbers and other mathematical wonders [broken link]

Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (9,-20).

FORMULA

a(n) = 5*a(n-1) + 4^(n-1). - Xavier Acloque, Oct 20 2003

From Mohammad K. Azarian, Jan 14 2009: (Start)

G.f.: 1/(1-5*x) - 1/(1-4*x).

E.g.f.: e^(5*x) - e^(4*x). (End)

a(n) = 9*a(n-1) - 20*a(n-2), a(0)=0, a(1)=1. - Vincenzo Librandi, Jan 28 2011

MAPLE

a:=n->sum(4^(n-j)*binomial(n, j), j=1..n): seq(a(n), n=0..18); # Zerinvary Lajos, Jan 04 2007

MATHEMATICA

a[n_]:=5^n-4^n; a[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)

LinearRecurrence[{9, -20}, {0, 1}, 30] (* Harvey P. Dale, Oct 01 2016 *)

PROG

(Sage) [lucas_number1(n, 9, 20) for n in xrange(0, 21)] # Zerinvary Lajos, Apr 23 2009

(PARI) a(n)=5^n-4^n \\ M. F. Hasler, May 03 2015

(GAP) List([0..20], n->5^n - 4^n); # Muniru A Asiru, Mar 04 2018

CROSSREFS

Sequence in context: A202120 A201084 A305783 * A125346 A190666 A016200

Adjacent sequences:  A005057 A005058 A005059 * A005061 A005062 A005063

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:52 EDT 2019. Contains 327187 sequences. (Running on oeis4.)