login
A016192
Inverse of 2183rd cyclotomic polynomial.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
0,1
COMMENTS
Periodic with period length 2183. - Ray Chandler, Apr 07 2017
FORMULA
G.f. (1 + x + ... + x^36 - x^59 - ... - x^95)/(1 - x^2183) = (1 - x^37)/(1 - x)*(1 - x^59)/(1 - x^2183) = (1 + x + ... + x^36)/(1 + x^59 + x^118 + ... + x^2124) = 1/((1 - x)(1 + x^37 + x^59 +...+ x^2087)), therefore this is a linear recurrence of order 2088. - M. F. Hasler, Feb 16 2018
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
PROG
(PARI) A016192_vec(N)=Vec((O(x^N)+1-x^37)/(1-x)*(1-x^59)/(1-x^2183)) \\ M. F. Hasler, Feb 16 2018
KEYWORD
sign
AUTHOR
STATUS
approved