login
A013958
a(n) = sigma_10(n), the sum of the 10th powers of the divisors of n.
11
1, 1025, 59050, 1049601, 9765626, 60526250, 282475250, 1074791425, 3486843451, 10009766650, 25937424602, 61978939050, 137858491850, 289537131250, 576660215300, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 10250010815226, 16680163512500, 26585860217050
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^10*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^9)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(10*e+10)-1)/(p^10-1).
Dirichlet g.f.: zeta(s)*zeta(s-10).
Sum_{k=1..n} a(k) = zeta(11) * n^11 / 11 + O(n^12). (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[10, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
DivisorSigma[10, Range[20]] (* Harvey P. Dale, Jan 04 2012 *)
PROG
(Sage) [sigma(n, 10)for n in range(1, 18)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=sigma(n, 10) \\ Charles R Greathouse IV, Apr 28, 2011
(Magma) [DivisorSigma(10, n): n in [1..20]]; // Bruno Berselli, Apr 10 2013
KEYWORD
nonn,mult,easy
STATUS
approved