login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013956 sigma_8(n), the sum of the 8th powers of the divisors of n. 7
1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 43053283, 100390882, 214358882, 431733666, 815730722, 1481554114, 2563287812, 4311810305, 6975757442, 11064693731, 16983563042, 25700456418 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

FORMULA

G.f. sum(k>=1, k^8*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003

MATHEMATICA

lst={}; Do[AppendTo[lst, DivisorSigma[8, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)

PROG

(Sage) [sigma(n, 8)for n in xrange(1, 21)] # Zerinvary Lajos, Jun 04 2009

(PARI) a(n)=sigma(n, 8) \\ Charles R Greathouse IV, Apr 28, 2011

(MAGMA) [DivisorSigma(8, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013

CROSSREFS

Sequence in context: A155468 A034682 A017679 * A036086 A000542 A023877

Adjacent sequences:  A013953 A013954 A013955 * A013957 A013958 A013959

KEYWORD

nonn,mult,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 20:00 EST 2016. Contains 278986 sequences.