login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013960 a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n. 10
1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for sequences related to sigma(n)

FORMULA

G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003

Dirichlet g.f.: zeta(s-12)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016

MATHEMATICA

DivisorSigma[12, Range[20]] (* Harvey P. Dale, Jan 28 2015 *)

PROG

(Sage) [sigma(n, 12) for n in range(1, 17)] # Zerinvary Lajos, Jun 04 2009

(MAGMA) [DivisorSigma(12, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016

(PARI) N=99; q='q+O('q^N); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016

CROSSREFS

Sequence in context: A217196 A321809 A017687 * A036090 A123094 A226695

Adjacent sequences:  A013957 A013958 A013959 * A013961 A013962 A013963

KEYWORD

nonn,mult,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 19:16 EDT 2021. Contains 343156 sequences. (Running on oeis4.)