login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013594 Smallest order of cyclotomic polynomial containing n or -n as a coefficient. 12
0, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 11305, 17255, 17255, 20615, 20615, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is infinite - see the Lang reference.

An alternative version would start with 1 rather than 0.

REFERENCES

Bateman, C. Pomerance and R. C. Vaughan, Colloq. Math. Soc. Janos Bolyai, 34 (1984), 171-202.

P. Erdos and R. C. Vaughan, J. London Math. Soc. 8 (1974), 393-400.

S. Lang, Algebra: 3rd edition, Addison-Wesley, 1993, p. 281.

Maier, Prog. Math. 85 (Birkhaueser), 1990, 349-366.

Maier, Acta Arith. 64 (1993), 227-235.

Maier, Prog. Math. 139 (Birkhaueser) 1996, 633-638.

Maier, Period. Math. Hungar. 43 (2001), 155-169.

Montgomery and R. C. Vaughan, Glasgow Math. J. 27 (1985), 143-159.

R. C. Vaughan, Michigan Math. J. 21 (1974), 289-295.

M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013; http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).

Eric Weisstein's World of Mathematics, Cyclotomic Polynomial

EXAMPLE

a(2)=105 because cyclotomic(105) contains "-2" as coefficient, but for n < 105 cyclotomic(n) does not contain 2 or -2.

x^105 - 1 = ( - 1 + x)(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)(1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12)(1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + x^19 - x^23 + x^24)(1 + x + x^2 - x^5 - x^6 - 2x^7 - x^8 - x^9 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 - x^20 - x^22 - x^24 - x^26 - x^28 + x^31 + x^32 + x^33 + x^34 + x^35 + x^36 - x^39 - x^40 - 2x^41 - x^42 - x^43 + x^46 + x^47 + x^48)

MATHEMATICA

Table[Position[Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 10000}], j][[1]], {j, 1, 10}] - Ian Miller, Feb 25 2008

PROG

(PARI) nm=6545; m=0; forstep(n=1, nm, 2, if(issquarefree(n), p=polcyclo(n); o=poldegree(p); for(k=0, o, a=abs(polcoeff(p, k)); if(a>m, m=a; print([m, n, factor(n)])))))

CROSSREFS

Cf. A046887, A013595, A013596, A063696, A063698, A134518, A137979.

Sequence in context: A113480 A190577 A102792 * A160340 A136418 A134518

Adjacent sequences:  A013591 A013592 A013593 * A013595 A013596 A013597

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Eric W. Weisstein

Further terms from T. D. Noe, Oct 29 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 15:19 EDT 2015. Contains 261092 sequences.