login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013594 Smallest order of cyclotomic polynomial containing n or -n as a coefficient. 14
0, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 11305, 17255, 17255, 20615, 20615, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is infinite - see the Lang reference.

An alternative version would start with 1 rather than 0.

REFERENCES

Bateman, C. Pomerance and R. C. Vaughan, Colloq. Math. Soc. Janos Bolyai, 34 (1984), 171-202.

S. Lang, Algebra: 3rd edition, Addison-Wesley, 1993, p. 281.

Maier, Prog. Math. 85 (Birkhaueser), 1990, 349-366.

Maier, Prog. Math. 139 (Birkhaueser) 1996, 633-638.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

P. Erdõs, R. C. Vaughan, Bounds for the r-th coefficients of cyclotomic polynomials, J. London Math. Soc. (2) 8 (1974), 393--400 ( MR50 #9835; Zentralblatt 295.10014).

H. Maier, Cyclotomic polynomials with large coefficients, Acta Arith. 64 (1993), 227-235.

H. Maier, Cyclotomic polynomials whose orders contain many prime factors, Period. Math. Hungar. 43 (2001), 155-169.

H. L. Montgomery and R. C. Vaughan, The order of magnitude of the mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159.

R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).

M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013;

Eric Weisstein's World of Mathematics, Cyclotomic Polynomial

EXAMPLE

a(2)=105 because cyclotomic(105) contains "-2" as coefficient, but for n < 105 cyclotomic(n) does not contain 2 or -2.

x^105 - 1 = ( - 1 + x)(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)(1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12)(1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + x^19 - x^23 + x^24)(1 + x + x^2 - x^5 - x^6 - 2x^7 - x^8 - x^9 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 - x^20 - x^22 - x^24 - x^26 - x^28 + x^31 + x^32 + x^33 + x^34 + x^35 + x^36 - x^39 - x^40 - 2x^41 - x^42 - x^43 + x^46 + x^47 + x^48)

MATHEMATICA

Table[Position[Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 10000}], j][[1]], {j, 1, 10}] - Ian Miller, Feb 25 2008

PROG

(PARI) nm=6545; m=0; forstep(n=1, nm, 2, if(issquarefree(n), p=polcyclo(n); o=poldegree(p); for(k=0, o, a=abs(polcoeff(p, k)); if(a>m, m=a; print([m, n, factor(n)])))))

CROSSREFS

Cf. A046887, A013595, A013596, A063696, A063698, A134518, A137979.

Sequence in context: A113480 A190577 A102792 * A160340 A136418 A134518

Adjacent sequences:  A013591 A013592 A013593 * A013595 A013596 A013597

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Eric W. Weisstein

Further terms from T. D. Noe, Oct 29 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 21:15 EST 2016. Contains 279011 sequences.