login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013594 Smallest order of cyclotomic polynomial containing n or -n as a coefficient. 12
0, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 11305, 17255, 17255, 20615, 20615, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is infinite - see the Lang reference.

An alternative version would start with 1 rather than 0.

REFERENCES

Bateman, C. Pomerance and R. C. Vaughan, Colloq. Math. Soc. Janos Bolyai, 34 (1984), 171-202.

P. Erdos and R. C. Vaughan, J. London Math. Soc. 8 (1974), 393-400.

S. Lang, Algebra: 3rd edition, Addison-Wesley, 1993, p. 281.

Maier, Prog. Math. 85 (Birkhaueser), 1990, 349-366.

Maier, Acta Arith. 64 (1993), 227-235.

Maier, Prog. Math. 139 (Birkhaueser) 1996, 633-638.

Maier, Period. Math. Hungar. 43 (2001), 155-169.

Montgomery and R. C. Vaughan, Glasgow Math. J. 27 (1985), 143-159.

R. C. Vaughan, Michigan Math. J. 21 (1974), 289-295.

M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013; http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).

Eric Weisstein's World of Mathematics, Cyclotomic Polynomial

EXAMPLE

a(2)=105 because cyclotomic(105) contains "-2" as coefficient, but for n < 105 cyclotomic(n) does not contain 2 or -2.

x^105 - 1 = ( - 1 + x)(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)(1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12)(1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + x^19 - x^23 + x^24)(1 + x + x^2 - x^5 - x^6 - 2x^7 - x^8 - x^9 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 - x^20 - x^22 - x^24 - x^26 - x^28 + x^31 + x^32 + x^33 + x^34 + x^35 + x^36 - x^39 - x^40 - 2x^41 - x^42 - x^43 + x^46 + x^47 + x^48)

MATHEMATICA

Table[Position[Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 10000}], j][[1]], {j, 1, 10}] - Ian Miller, Feb 25 2008

PROG

(PARI) nm=6545; m=0; forstep(n=1, nm, 2, if(issquarefree(n), p=polcyclo(n); o=poldegree(p); for(k=0, o, a=abs(polcoeff(p, k)); if(a>m, m=a; print([m, n, factor(n)])))))

CROSSREFS

Cf. A046887, A013595, A013596, A063696, A063698, A134518, A137979.

Sequence in context: A113480 A190577 A102792 * A160340 A136418 A134518

Adjacent sequences:  A013591 A013592 A013593 * A013595 A013596 A013597

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Eric W. Weisstein

Further terms from T. D. Noe, Oct 29 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 05:29 EDT 2014. Contains 246160 sequences.