The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013596 Irregular triangle of coefficients of cyclotomic polynomial Phi_n(x) (exponents in decreasing order). 7
 1, 0, 1, -1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS We follow Maple in defining Phi_0 to be x; it could equally well be taken to be 1. REFERENCES E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90. Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194. LINKS Antti Karttunen, Table of n, a(n) for n = 0..45566, rows 0..385 flattened EXAMPLE Phi_0 = x             --> Row 0: [1, 0] Phi_1 = x - 1         --> Row 1: [1, -1] Phi_2 = x + 1         --> Row 2: [1, 1] Phi_3 = x^2 + x + 1   --> Row 3: [1, 1, 1] Phi_4 = x^2 + 1       --> Row 4: [1, 0, 1] etc. After row zero, each row n has A039649(n) terms. MAPLE with(numtheory): [ seq(cyclotomic(n, x), n=0..48) ]; MATHEMATICA Join[{1, 0}, Table[ CoefficientList[ Cyclotomic[n, x], x] // Reverse, {n, 1, 16}] // Flatten] (* Jean-François Alcover, Dec 11 2012 *) PROG (PARI) A013595row(n) = { if(!n, p=x, p = polcyclo(n)); Vecrev(p); }; \\ This function from Michel Marcus's code for A013595. n=0; for(r=0, 385, v=A013595row(r); k=length(v); while(k>0, write("b013596.txt", n, " ", v[k]); n=n+1; k=k-1)); \\ Antti Karttunen, Aug 13 2017 CROSSREFS Version with reversed rows: A013595. Cf. A039649, A160340. Sequence in context: A072418 A128973 A176412 * A182394 A079054 A131695 Adjacent sequences:  A013593 A013594 A013595 * A013597 A013598 A013599 KEYWORD sign,easy,nice,tabf AUTHOR EXTENSIONS Example section edited by Antti Karttunen, Aug 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 18:27 EDT 2020. Contains 333189 sequences. (Running on oeis4.)