login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009006
Expansion of e.g.f.: 1 + tan(x).
26
1, 1, 0, 2, 0, 16, 0, 272, 0, 7936, 0, 353792, 0, 22368256, 0, 1903757312, 0, 209865342976, 0, 29088885112832, 0, 4951498053124096, 0, 1015423886506852352, 0, 246921480190207983616, 0, 70251601603943959887872, 0, 23119184187809597841473536, 0
OFFSET
0,4
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997; See Exercise 1.41(d).
LINKS
Kwang-Wu Chen, An Interesting Lemma for Regular C-fractions, J. Integer Seqs., Vol. 6, 2003.
FORMULA
Let b(n) be a(n) shifted one place to the left with b(2+4k) = -a(3+4k), k=0, 1, .. Then b(n) is the expansion of sech(x)^2. - Mario Catalani (mario.catalani(AT)unito.it), Feb 08 2003
g(x) = x + x^2 - 2*x^4 + 16*x^6 - 272*x^8 + ... satisfies g(x/(1+2x)) = -g(-x).
E.g.f.: 1 + tan(x).
E.g.f. exp(x)*sech(x) is 1,1,0,-2,0,16,0,-272,... (A155585). - Paul Barry, Mar 15 2006
From Robert FERREOL, Dec 30 2006: (Start)
a(n) = 2^n*abs(Euler(n,0)) where Euler(n,x) is the n-th Eulerian polynomial.
a(n) = abs(u(n)) where u(n) = -Sum_{k=0..n-1} u(k)*binomial(n, k)*2^(n-k-1) with u(0) = 1. (End)
Sum_{k=0..n} A075263(n, k)*2^k = 1,-1,0,2,0,-16,0,272,0,-7936,0,... for n = 0, 1, 2, 3, 4, ..., respectively. - Philippe Deléham, Aug 20 2007
E.g.f. -log(cos(x)), for n > 0. - Vladimir Kruchinin, Aug 09 2010
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(floor(n/2)+j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 - Dec 20 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 - (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: 1 + tan(x) = 1+x/(U(0)-x) where U(k)= 4*k+1 + x/(1+x/(4*k+3 - x/(1- x/U(k+1)))).
E.g.f.: 1+tan(x) = 1 - 3*x/((U(0) + 3*x^2) where U(k) = 64*k^3 + 48*k^2 - 4*k*(2*x^2+1) - 2*x^2 - 3 - x^4*(4*k-1)*(4*k+7)/U(k+1).
E.g.f.: 1+x*G(0) where G(k) = 1 - x^2/(x^2 - (2*k+1)*(2*k+3)/G(k+1)).
G.f.: 1 + x/G(0) where G(k) = 1 - 2*x^2*(4*k^2+4*k+1)-4*x^4*(k+1)^2*(4*k^2+8*k+3) /G(k+1).
G.f.: 1 + x*Q(0) where Q(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 1/Q(k+1)).
G.f.: Q(0) where Q(k) = 1 + x*(k+1)/(x*(k+1)+1/(1- x*(k+1)/(x*(k+1) - 1/Q(k+1)))).
E.g.f.: 2 - 1/Q(0) where Q(k) = 1 + x/(4*k+1 - x/(1 - x/(4*k+3 + x/Q(k+1)))). (End)
a(n) ~ 2*n!*(2/Pi)^(n+1) if n is odd. - Vaclav Kotesovec, Jun 01 2013
a(n) = i^(n+1) * 2^n * ((-1)^n-1) * (2^(n+1)-1) * Bernoulli(n+1)/(n+1), n > 0. - Benedict W. J. Irwin, May 27 2016
a(0) = a(1) = 1; a(n) = -2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 05 2020
MAPLE
u:=proc(n) if n=0 then 1 else -add(u(k)*binomial(n, k)/2*2^(n-k), k=0..n-1) fi end; seq(u(n), n=0..15); # Robert FERREOL, Dec 30 2006
MATHEMATICA
a[m_] := Abs[Sum[(-2)^(m-k) k! StirlingS2[m, k], {k, 0, m}]]; Table[a[i], {i, 0, 20}] (* Peter Luschny, Apr 29 2009 *)
A009006[n_] := Cos[Pi (n-1) / 2] (4^(n+1) - 2^(n+1)) * BernoulliB[n+1] / (n+1); a[0] := 1; Table[A009006[n], {n, 0, 30}] (* Peter Luschny, Jun 14 2021 *)
PROG
(PARI) a(n)=if(n<1, n==0, n!*polcoeff(tan(x+x*O(x^n)), n))
(Sage)
def A009006(n) :
if n == 0 : return 1
return add(add((-1)^(n//2+j+1)*binomial(n+1, k-j)*j^n for j in (0..k)) for k in (1..n))
[A009006(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1 + Tan(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 21 2018
CROSSREFS
A000182(n) = a(2n-1).
Sequence in context: A146558 A364514 A025600 * A155585 A350972 A236755
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Reformatted Mar 15 1997
Definition corrected by Joerg Arndt, Apr 29 2011
Terms a(26) onward added by G. C. Greubel, Jul 21 2018
STATUS
approved