This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008813 Expansion of (1+x^6)/((1-x)^2*(1-x^6)). 9
 1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 21, 24, 29, 34, 39, 44, 49, 54, 61, 68, 75, 82, 89, 96, 105, 114, 123, 132, 141, 150, 161, 172, 183, 194, 205, 216, 229, 242, 255, 268, 281, 294, 309, 324, 339, 354, 369, 384, 401, 418, 435, 452, 469, 486, 505, 524, 543, 562 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of 0..n arrays of 7 elements with zero second differences. - R. H. Hardin, Nov 16 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1). FORMULA G.f.: (1+x^6)/((1-x)^2*(1-x^6)). a(n) = 2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8). - R. H. Hardin, Nov 16 2011 MAPLE seq(coeff(series((1+x^6)/((1-x)^2*(1-x^6)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019 MATHEMATICA CoefficientList[Series[(1+x^6)/(1-x)^2/(1-x^6), {x, 0, 70}], x] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 6, 9, 12}, 70] (* Harvey P. Dale, Oct 13 2012 *) PROG (PARI) Vec((1+x^6)/((1-x)^2*(1-x^6)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^6)/((1-x)^2*(1-x^6)) )); // G. C. Greubel, Sep 12 2019 (Sage) def A008813_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+x^6)/((1-x)^2*(1-x^6))).list() A008813_list(70) # G. C. Greubel, Sep 12 2019 (GAP) a:=[1, 2, 3, 4, 5, 6, 9, 12];; for n in [9..70] do a[n]:=2*a[n-1]-a[n-2] +a[n-6]-2*a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 12 2019 CROSSREFS Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), this sequence (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10). Sequence in context: A091179 A036027 A036032 * A133463 A187550 A307818 Adjacent sequences:  A008810 A008811 A008812 * A008814 A008815 A008816 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms added by G. C. Greubel, Sep 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)