login
A008811
Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
12
0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
OFFSET
0,3
COMMENTS
Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011
LINKS
Daniel Gabric and Joe Sawada, Investigating the discrepancy property of de Bruijn sequences, University of Guelph (Canada, 2020).
János Pach and Pankaj K. Agarwal, Combinatorial Geometry, p. 220, 1995, Problem 13.10.
FORMULA
G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023
MAPLE
f := n->n^2/4+3*n/2+g(n);
g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;
seq(f(n), n=-3..50);
MATHEMATICA
CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x, 0, 60}], x] (* G. C. Greubel, Sep 12 2019 *)
PROG
(PARI) concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008811_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()
A008811_list(60) # G. C. Greubel, Sep 12 2019
(GAP) a:=[0, 1, 2, 3, 4, 7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
Cf. A129756 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).
Sequence in context: A073627 A062042 A107817 * A144678 A309678 A279225
KEYWORD
nonn,easy
STATUS
approved