login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008444
Theta series of A_4 lattice.
5
1, 20, 30, 60, 60, 120, 40, 180, 150, 140, 130, 240, 180, 360, 120, 260, 220, 480, 210, 400, 360, 240, 360, 660, 200, 620, 240, 600, 540, 600, 240, 640, 630, 720, 320, 780, 420, 1080, 600, 480, 650, 840, 360, 1260, 720, 840, 440, 1380, 660, 860, 630, 640, 1080, 1560, 400
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x)^5 / f(-x^5) + 25 * x * f(-x^5)^5 / f(-x) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 06 2011
Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^5 + theta_4(z, q)^5 dz in powers of q^2. - Michael Somos, Jan 01 2012
Coefficient of x^0 in the expansion f(x * q, q / x)^5 in powers of q^2 where f() is a Ramanujan theta function. - Michael Somos, Jan 01 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(3/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A023916. - Michael Somos, Feb 06 2011
A023916(5*n) = a(n) for all n in Z.
EXAMPLE
G.f. = 1 + 20*x + 30*x^2 + 60*x^3 + 60*x^4 + 120*x^5 + 40*x^6 + 180*x^7 + ...
G.f. = 1 + 20*q^2 + 30*q^4 + 60*q^6 + 60*q^8 + 120*q^10 + 40*q^12 + 180*q^14 + 150*q^16 + 140*q^18 + 130*q^20 + 240*q^22 + 180*q^24 + 360*q^26 + 120*q^28 + 260*q^30 + 220*q^32 + 480*q^34 + 210*q^36 + 400*q^38 + 360*q^40 + 240*q^42 + 360*q^44 + 660*q^46 + 200*q^48 + 620*q^50 + ...
MATHEMATICA
a[ n_] := With[ {u1 = QPochhammer[ x], u5 = QPochhammer[ x^5]}, SeriesCoefficient[ u1^5/u5 + 25 x u5^5/u1, {x, 0, n}]]; (* Michael Somos, Nov 13 2014 *)
terms = 55; f[q_] = LatticeData["A4", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
PROG
(Magma) L := Lattice("A", 4); A<q> := ThetaSeries(L, 120); A;
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A) + 25 * x * eta(x^5 + A)^5 / eta(x + A), n))}; /* Michael Somos, Feb 06 2011 */
(Magma) A := Basis( ModularForms( Gamma1(5), 2), 55) ; A[1] + 20*A[2] + 30*A[3]; /* Michael Somos, Nov 13 2014 */
CROSSREFS
Cf. A000007, A000122, A004016, A004015, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_2, A_3, A_5, ...).
Sequence in context: A066027 A256227 A142342 * A268984 A359002 A066214
KEYWORD
nonn,nice
STATUS
approved