OFFSET
1,2
COMMENTS
a(n)=|{(x,y):1<=x<=y<=n, gcd(x,y,n)=1}|. E.g. a(4)=7 because of the pairs (1,1), (1,2), (1,3), (1,4), (2,3), (3,3), (3,4). - Steve Butler, Apr 18 2006
Partial sums of a(n) give A015631(n). - Steve Butler, Apr 18 2006
Equals row sums of triangle A159905. - Gary W. Adamson, Apr 25 2009; corrected by Mats Granvik, Apr 24 2010
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
N. J. A. Sloane, Transforms
FORMULA
a(n) = (A007434(n)+A000010(n))/2, half the sum of the Mobius transforms of n^2 and n. Dirichlet g.f. (zeta(s-2)+zeta(s-1))/(2*zeta(s)). - R. J. Mathar, Feb 09 2011
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/(1 - x)^3. - Ilya Gutkovskiy, Apr 25 2017
MAPLE
with(numtheory):
a:= proc(n) option remember;
add(mobius(n/d)*d*(d+1)/2, d=divisors(n))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2011
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}]; Array[a, 60] (* Jean-François Alcover, Apr 17 2014 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*d*(d+1)/2); \\ Michel Marcus, Nov 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved