This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007436 Moebius transform of Fibonacci numbers. (Formerly M1023) 6
 1, 0, 1, 2, 4, 6, 12, 18, 32, 50, 88, 134, 232, 364, 604, 966, 1596, 2544, 4180, 6708, 10932, 17622, 28656, 46206, 75020, 121160, 196384, 317432, 514228, 831374, 1346268, 2177322, 3524488, 5701290, 9227448, 14927632, 24157816, 39083988 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS After a(4) = 2, there are no primes in this sequence. Every element thereafter has at least two prime factors, the semiprimes (intersection of A007436 and A001358) starting 4, 6, 134, 831374, ... - Jonathan Vos Post, Dec 15 2004 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..500 N. J. A. Sloane, Transforms FORMULA Row sums of the triangle generated by A054525 * A127647. - Gary W. Adamson, Jan 22 2007 G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/(1 - x - x^2). - Ilya Gutkovskiy, Apr 25 2017 MATHEMATICA mt[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu /@ (n/d)*Fibonacci /@ d)]; Table[ mt[n], {n, 38}] (* Robert G. Wilson v Dec 10 2004 *) a[n_] := DivisorSum[n, Fibonacci[#] MoebiusMu[n/#]&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *) PROG (PARI) a(n)=sumdiv(n, d, fibonacci(d)*moebius(n/d)) CROSSREFS Cf. A001358. Sequence in context: A192224 A167777 A259941 * A052847 A052823 A063516 Adjacent sequences:  A007433 A007434 A007435 * A007437 A007438 A007439 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Dec 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 05:10 EST 2019. Contains 320140 sequences. (Running on oeis4.)