login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015631 Number of ordered triples of integers from [ 1..n ] with no global factor. 10
1, 3, 8, 15, 29, 42, 69, 95, 134, 172, 237, 287, 377, 452, 552, 652, 804, 915, 1104, 1252, 1450, 1635, 1910, 2106, 2416, 2674, 3007, 3301, 3735, 4027, 4522, 4914, 5404, 5844, 6432, 6870, 7572, 8121, 8805, 9389, 10249, 10831, 11776, 12506 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of integer-sided triangles with at least two sides <= n and sides relatively prime. - Henry Bottomley, Sep 29 2006

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = (A071778(n)+3*A018805(n)+2)/6. - Vladeta Jovovic, Dec 01 2004

Partial sums of the Moebius transform of the triangular numbers (A007438). - Steve Butler, Apr 18 2006

a(n) = 2*A123324(n) - A046657(n) for n>1. - Henry Bottomley, Sep 29 2006

Row sums of triangle A134543. - Gary W. Adamson, Oct 31 2007

a(n) ~ n^3 / (6*Zeta(3)). - Vaclav Kotesovec, Jan 31 2019

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^3. - Ilya Gutkovskiy, Feb 14 2020

EXAMPLE

a(4) = 15 because the 15 triples in question are in lexicographic order: [1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,2], [1,2,3], [1,2,4], [1,3,3], [1,3,4], [1,4,4], [2,2,3], [2,3,3], [2,3,4], [3,3,4] and [3,4,4]. - Wolfdieter Lang, Apr 04 2013

The a(4) = 15 triangles with at least two sides <= 4 and sides relatively prime (see Henry Bottomley's comment above) are: [1,1,1], [1,2,2], [2,2,3], [1,3,3], [2,3,3], [2,3,4], [3,3,4], [3,3,5], [1,4,4], [2,4,5], [3,4,4], [3,4,5], [3,4,6], [4,4,5], [4,4,7]. - Alois P. Heinz, Feb 14 2020

MAPLE

with(numtheory):

b:= proc(n) option remember;

       add(mobius(n/d)*d*(d+1)/2, d=divisors(n))

    end:

a:= proc(n) option remember;

      b(n) + `if`(n=1, 0, a(n-1))

    end:

seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2011

MATHEMATICA

a[1] = 1; a[n_] := a[n] = Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}] + a[n-1]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 20 2014, after Maple *)

Accumulate[Table[Sum[MoebiusMu[n/d]*d*(d + 1)/2, {d, Divisors[n]}], {n, 1, 50}]] (* Vaclav Kotesovec, Jan 31 2019 *)

PROG

(MAGMA) [n eq 1 select 1 else Self(n-1)+ &+[MoebiusMu(n div d) *d*(d+1)/2:d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Feb 14 2020

CROSSREFS

Cf. A002088, A015616, A015634, A015650, A134543.

Sequence in context: A294423 A294426 A097589 * A116686 A317252 A135350

Adjacent sequences:  A015628 A015629 A015630 * A015632 A015633 A015634

KEYWORD

nonn

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 13:07 EDT 2020. Contains 333151 sequences. (Running on oeis4.)