login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006298 Number of genus 2 rooted maps with 1 face with n vertices.
(Formerly M5117)
13
21, 483, 6468, 66066, 570570, 4390386, 31039008, 205633428, 1293938646, 7808250450, 45510945480, 257611421340, 1422156202740, 7683009544980, 40729207226400, 212347275857640, 1090848505817070, 5530195966465170, 27704671055301240, 137308238124957900, 673903972248687180, 3278143051447003740, 15816495077491530240, 75740811006275677080, 360195962116311020700, 1702004224469594857812, 7994567449203067400976, 37343992994700814841496, 173539732151844963086952, 802554981295852197252840, 3694707104076119563303872, 16936911943685345325329616 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.

LINKS

G. C. Greubel, Table of n, a(n) for n = 4..1000

T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.

FORMULA

a(n+1) = ((5*n+3)*(4n*+2)*a(n))/((5*n-2)(n-3)).

G.f.: 21*x^4*(1+x)/sqrt((1-4*x)^11). a(n) = 21 * (A020922(n-4) + A020922(n-3)). - Ralf Stephan, Mar 13 2004 (g.f. corrected by Joerg Arndt, Apr 07 2013)

0 = a(n)*(+16*a(n+1) +62*a(n+2) +6*a(n+3)) +a(n+1)*(-38*a(n+1) -5*a(n+2) +17*a(n+3)) +a(n+2)*(-23*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Mar 30 2016

a(n) ~ n^(9/2) * 2^(2*n-5) / (9*sqrt(Pi)). - Vaclav Kotesovec, Mar 30 2016

EXAMPLE

G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ...

MATHEMATICA

CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* G. C. Greubel, Jan 30 2017 *)

PROG

(PARI) A006298(n) = if(n<4, 0, if(n==4, 21, ((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ Joerg Arndt, Apr 07 2013

(PARI) x='x+O('x^66);  Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ Joerg Arndt, Apr 07 2013

CROSSREFS

Cf. A035309.

Sequence in context: A158603 A025603 A269922 * A089907 A015695 A006299

Adjacent sequences:  A006295 A006296 A006297 * A006299 A006300 A006301

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from David W. Wilson

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 13:59 EST 2017. Contains 294972 sequences.