login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006298
Number of genus 2 rooted maps with 1 face with n vertices.
(Formerly M5117)
13
21, 483, 6468, 66066, 570570, 4390386, 31039008, 205633428, 1293938646, 7808250450, 45510945480, 257611421340, 1422156202740, 7683009544980, 40729207226400, 212347275857640, 1090848505817070, 5530195966465170, 27704671055301240, 137308238124957900, 673903972248687180
OFFSET
4,1
COMMENTS
Call C(p,[alpha],g) the number of partitions of the cyclically ordered set [p], of cyclic type [alpha], and of genus g (genus g Faa di Bruno coefficients of type [alpha]). The number C(2n,[2^n],g) of genus g partitions of the set [2n] into n blocks of length 2 is given by the coefficient of u^(2g) in the power series expansion of ((2*k)!/((k+1)!*(k-2g)!))*((u/2)/tanh(u/2))^(k+1) about the point u=0 [Harer-Zagier]. The given sequence a(n) is C(2n,[2^n],2), or, equivalently, it is the number of genus 2 partitions of the set [2n] into n parts with no singletons; it vanishes for n < 4 and a(4)=21. - Robert Coquereaux, Mar 07 2024
REFERENCES
J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 475-485.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
LINKS
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: A compendium of results, Journal of Integer Sequences, Vol. 27 (2024), article 24.2.6. See p.19.
Robert Cori and G Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
Jean-Bernard Zuber, Counting partitions by genus. I. Genus 0 to 2, Enumer. Comb. Appl. 4 (2) (2024), article #S2R13. See pp. 14-17.
FORMULA
D-finite with recurrence a(n+1) = ((5*n+3)*(4n*+2)*a(n))/((5*n-2)(n-3)).
G.f.: 21*x^4*(1+x)/sqrt((1-4*x)^11). a(n) = 21 * (A020922(n-4) + A020922(n-3)). - Ralf Stephan, Mar 13 2004 (g.f. corrected by Joerg Arndt, Apr 07 2013)
0 = a(n)*(+16*a(n+1) +62*a(n+2) +6*a(n+3)) +a(n+1)*(-38*a(n+1) -5*a(n+2) +17*a(n+3)) +a(n+2)*(-23*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Mar 30 2016
a(n) ~ n^(9/2) * 2^(2*n-5) / (9*sqrt(Pi)). - Vaclav Kotesovec, Mar 30 2016
a(n) = ((-2+5*n)*(2*n)!)/(1440*n!*(n-4)!) for n >= 4. - Robert Coquereaux, Mar 07 2024
EXAMPLE
G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ...
MAPLE
gf := 21*x^4*(x + 1)*(1 - 4*x)^(-11/2): ser := series(gf, x, 32):
seq(coeff(ser, x, n), n = 4..24); # Peter Luschny, Mar 07 2024
MATHEMATICA
CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* G. C. Greubel, Jan 30 2017 *)
a[n_] := ((-2 + 5 * n) * (2 * n)!)/(1440 * n! * (n - 4)!) (* Robert Coquereaux, Mar 07 2024 *)
PROG
(PARI) A006298(n) = if(n<4, 0, if(n==4, 21, ((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ Joerg Arndt, Apr 07 2013
(PARI) x='x+O('x^66); Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ Joerg Arndt, Apr 07 2013
CROSSREFS
Cf. A035309.
Cf. A000108 for C(2n, [2^n], 0) and A002802 for C(2n, [2^n], 1).
Sequence in context: A025603 A296586 A269922 * A089907 A015695 A006299
KEYWORD
nonn,easy
STATUS
approved