OFFSET
3,2
COMMENTS
Place n points in general position on a circle, join them in all possible ways; how many triangles can be seen?
Equals binomial transform of [1, 7, 20, 29, 22, 8, 1, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
REFERENCES
C. L. Liu, Introduction to Combinatorial Analysis. McGraw-Hill, NY, 1968, p. 20.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 3..1000
Claudi Alsina and Roger B. Nelson, A Panoply of Polygons, Dolciani Math. Expeditions, AMS/MAA (2023) Vol. 58, see page 7.
R. J. Cormier and R. B. Eggleton, Counting by correspondence, Math. Mag., 49 (1976), 181-186.
R. K. Guy & M. E. Larsen, Correspondence, 1986-87
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
T. Sillke, Number of triangles for a convex n-gon
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: x^3*(-1-x+x^3) / (x-1)^7 . - Simon Plouffe in his 1992 dissertation
a(2n-1) = A006600(2n-1) for n > 1; a(2n) = A006600(2n) + A260417(n) for n > 1. - Jonathan Sondow, Jul 25 2015
MATHEMATICA
Table[Binomial[n+3, 6]+Binomial[n+1, 5]+Binomial[n, 5], {n, 3, 40}] (* Harvey P. Dale, Apr 09 2011 *)
PROG
(Magma) [Binomial(n+3, 6) + Binomial(n+1, 5) +Binomial(n, 5): n in [3..100]]; // Vincenzo Librandi, Apr 10 2011
(Haskell)
a005732 n = a005732_list !! (n-3)
a005732_list = 1 : 8 : f (drop 5 a007318_tabl) where
f (us:pss@(vs:_:ws:_)) = (us !! 5 + vs !! 5 + ws !! 6) : f pss
-- Reinhard Zumkeller, Mar 11 2014
(PARI) a(n)=binomial(n+3, 6) + binomial(n+1, 5) + binomial(n, 5) \\ Charles R Greathouse IV, Feb 19 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Thanks to Joshua Zucker, Ted Alper and Joe Keane for clarifying the connection with A006600.
STATUS
approved