This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161717 Number of reduced words of length n in the Weyl group B_8. 22
 1, 8, 35, 112, 293, 664, 1350, 2520, 4389, 7216, 11298, 16960, 24541, 34376, 46775, 62000, 80241, 101592, 126029, 153392, 183373, 215512, 249202, 283704, 318171, 351680, 383270, 411984, 436913, 457240, 472281, 481520, 484636, 481520, 472281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Computed with MAGMA using commands similar to those used to compute A161409. REFERENCES J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial. N. Bourbaki, Groupes et algĂ¨bres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..64 FORMULA G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084. MAPLE seq(coeff(series(mul((1-x^(2*k))/(1-x), k=1..8), x, 65), x, n), n = 0 .. 64); # Muniru A Asiru, Oct 25 2018 MATHEMATICA CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) / (1 - x)^8, {x, 0, 70}], x] (* Vincenzo Librandi, Aug 22 2016 *) PROG (PARI) t='t+O('t^40); Vec(prod(k=1, 8, 1-t^(2*k))/(1-t)^8) \\ G. C. Greubel, Oct 25 2018 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..8]])/(1-t)^8)); // G. C. Greubel, Oct 25 2018 CROSSREFS The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. Sequence in context: A161456 A005732 A162211 * A162494 A040977 A266785 Adjacent sequences:  A161714 A161715 A161716 * A161718 A161719 A161720 KEYWORD nonn,easy,fini,full AUTHOR John Cannon and N. J. A. Sloane, Nov 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 19:56 EST 2019. Contains 320403 sequences. (Running on oeis4.)