login
A005371
a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
(Formerly M3315)
9
3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807, 50755107359004694554823204, 387739824812222466915538827541705412334749, 19679776435706023589554719270187913247121278789615838446937339578603
OFFSET
0,1
REFERENCES
T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
a:= n-> L(L(n)):
seq(a(n), n=0..14); # Alois P. Heinz, Jun 01 2016
MATHEMATICA
l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n, 0, 12}]
LucasL[LucasL[Range[0, 15]]] (* G. C. Greubel, Dec 21 2017 *)
PROG
(Magma) [ Lucas(Lucas(n)): n in [0..20]]; // Vincenzo Librandi, Apr 16 2011
(PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
for(n=0, 15, print1(lucas(lucas(n)), ", ")) \\ G. C. Greubel, Dec 21 2017
(SageMath) [lucas_number2(lucas_number2(n, 1, -1), 1, -1) for n in range(15)] # G. C. Greubel Nov 14 2022
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
Offset changed Feb 28 2007
STATUS
approved