%I M3315 #59 Jul 03 2023 05:14:08
%S 3,1,4,7,29,199,5778,1149851,6643838879,7639424778862807,
%T 50755107359004694554823204,
%U 387739824812222466915538827541705412334749,19679776435706023589554719270187913247121278789615838446937339578603
%N a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
%D T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005371/b005371.txt">Table of n, a(n) for n = 0..15</a>
%p L:= n-> (<<0|1>, <1|1>>^n. <<2,1>>)[1,1]:
%p a:= n-> L(L(n)):
%p seq(a(n), n=0..14); # _Alois P. Heinz_, Jun 01 2016
%t l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n,0,12}]
%t LucasL[LucasL[Range[0, 15]]] (* _G. C. Greubel_, Dec 21 2017 *)
%o (Magma) [ Lucas(Lucas(n)): n in [0..20]]; // _Vincenzo Librandi_, Apr 16 2011
%o (PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
%o for(n=0,15, print1(lucas(lucas(n)), ", ")) \\ _G. C. Greubel_, Dec 21 2017
%o (SageMath) [lucas_number2(lucas_number2(n, 1,-1),1,-1) for n in range(15)] # _G. C. Greubel_ Nov 14 2022
%Y Cf. A000032, A005372, A007570, A068096, A068098.
%K easy,nonn
%O 0,1
%A _N. J. A. Sloane_
%E More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
%E Offset changed Feb 28 2007