This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007570 a(n) = F(F(n)), where F is a Fibonacci number. (Formerly M1537) 21
 0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Asymptotic behavior as n->infinity: a(n+1)=a(n)*phi^(F(n-1)), with phi = A001622 = 1.61803... (golden ratio). - Carmine Suriano, Jan 24 2011 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..19 (terms n = 0..17 from T. D. Noe) E. A. Parberry, Two recursion relations for F(F(n)), Fib. Quart., 15 (1977), 122 and 139. C. Street, A Recurrence for the Sequence {F(F(n)),n=>0} MAPLE F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> F(F(n)): seq(a(n), n=0..14);  # Alois P. Heinz, Oct 09 2015 MATHEMATICA F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[ F[ F[n] ], {n, 0, 14} ] Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *) PROG (Sage) [fibonacci(fibonacci(n)) for n in xrange(0, 14)] # Zerinvary Lajos, Nov 30 2009 (PARI) a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014 CROSSREFS Cf. A000045, A005371, A058051. Sequence in context: A108021 A162437 A216756 * A173313 A210575 A174143 Adjacent sequences:  A007567 A007568 A007569 * A007571 A007572 A007573 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS One more term from Harvey P. Dale, May 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 09:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)