login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005354
Number of asymmetric planar trees with n nodes.
(Formerly M2808)
4
1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
OFFSET
0,7
COMMENTS
a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Vincenzo Librandi)
Gilbert Labelle, Counting asymmetric enriched trees, J. Symbolic Comput. 14 (1992), no. 2-3, 211-242.
Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
T. Mütze and F. Weber, Construction of 2-factors in the middle layer of the discrete cube, Journal of Combinatorial Theory, Series A, 119(8) (2012), 1832-1855.
FORMULA
From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)
MAPLE
From R. J. Mathar, Feb 03 2010: (Start)
A000108 := proc(n) binomial(2*n, n)/(n+1) ; end proc:
A007727 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d, d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
A022553 := proc(n) A007727(n)/2/n ; end proc:
A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n, 'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n), n=0..20) ; (End)
MATHEMATICA
a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Christian G. Bower, Dec 15 1999
STATUS
approved